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Abstract

Linguistic query systems are special purpose IR applications. As text sizes, annotation layers, and metadata schemes of language 

corpora grow rapidly, performing complex searches becomes a highly computational expensive task. We evaluate several storage  

models  and  indexing  variants  in  two  multi-processor/multi-core  environments,  focusing  on  prototypical  linguistic  querying 

scenarios.  Our aim is to reveal  modeling and querying tendencies  – rather than absolute benchmark results  –  when using a  

relational database management system (RDBMS) and MapReduce for natural language corpus retrieval. Based on these findings,  

we are going to improve our approach for the efficient exploitation of very large corpora, combining advantages of state-of-the-art  

database systems with decomposition/parallelization strategies. Our reference implementation uses the German DeReKo reference  

corpus with currently more than 4 billion word forms, various multi-layer linguistic annotations, and several types of text-specific  

metadata. The proposed strategy is language-independent and adaptable to large-scale multilingual corpora.
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1. Motivation

In recent years, the quantitative examination of natural 
language  phenomena  has  become  one  of  the 
predominant  paradigms  within  (computational) 
linguistics.  Both  fundamental  research  on  the  basic 
principles  of  human  language  as  well  as  the 
development  of  speech  and  language  technology 
increasingly  rely  on  the  empirical  verification  of 
assumptions, rules, and theories. More data are mostly 
seen  as  better  data  (Church  &  Mercer,  1993),  and 
consequently, we notice a growing number of national 
and  international  initiatives  related  to  the  building  of 
large  linguistic  datasets  for  contemporary  world 
languages.  Besides  written  (and  sometimes  spoken) 
language  samples,  these  corpora  usually  contain  vast 
collections of morphosyntactic, phonetic, semantic, etc. 
annotations, plus text- or corpus-specific metadata.

The downside of this trend is obvious: Complex queries 
against very large multi-layer corpora (meaning corpora 
with multiple, potentially concurring annotation layers) 
quickly become highly computational  expensive tasks. 

So  even  with  specialized  applications,  our  ability  to 
store linguistic data is often bigger than our ability to 
analyze all this data in detail. In addition, the findings of 
empirical  corpus  studies  should  be  traceable  and 
reproducible (Kilgarriff, 2007; Pedersen, 2008).

Much  of  essential  work  towards  the  querying  of 
linguistic  corpora  goes  into  data  representation, 
integration  of  different  annotation  systems,  and  the 
formulation  of  query  languages  (Rehm  et.  al.,  2008; 
Zeldes et. al., 2009; Kepser et. al.,  2010; Frick et. al., 
2012).  We add to  this  efforts  by focusing the  scaling 
problem: As we go beyond corpus sizes of some billion 
words  and  at  the  same  time  increase  the  number  of 
possible  search  keys  (linguistically  motivated 
annotations  as  well  as  text-specific  metadata  like 
publication date, text type, genre, etc.), query costs rise 
disproportionately.  This  is  due  to  the  fact  that  unlike 
traditional IR systems, corpus retrieval systems have to 
deal  not  only  with  the  “horizontal”  representation  of 
textual data but also with heterogeneous metadata on all 
levels  of  linguistic  description.  And,  of  course,  the 
exploration  of  inter-relationships  between  annotations 



becomes more and more challenging as the number of 
annotation systems increases; e.g.,  Bański et. al. (2012) 
discuss  the  demands  and  technical  issues  when 
developing innovative corpus analysis platforms.

Given  this  context,  we  proposed  a  novel  retrieval 
approach that uses task parallelization and scales well to 
billion-word corpora (Schneider,  2011).  The following 
sections  evaluate  speedup  effects  of  this  approach  in 
multi-processor/multi-core  environments  as  well  as 
influences  of  data  parallelization  (partitioning)  and 
indexing methods. 

2. The Reference System

We are using a subset of 4 billion words from the multi-
layer  annotated  German  Reference  Corpus  DeReKo 
(Deutsches  Referenzkorpus) (Kupietz  et.  al.,  2010), 
which  constitutes  the  largest  linguistically  motivated 
collection of contemporary German. It covers language 
data from different media types (literature, newspapers, 
specialist journals, online texts, etc.), has been annotated 
morphosyntactically  with  three  competing  systems 
(Connexor, Xerox, TreeTagger), and provides additional 
text-specific metadata.

Complex  data  of  this  kind can be  made accessible  in 
different  ways.  In  order  to  filter  out  inappropriate 
approaches, we formulate the following presuppositions:

i. XML/SGML-based  markup  languages  are  more 
suitable for data exchange than for efficient storing 
and retrieval, so we prefer a compact encoding.

ii. File-based data storage is less  robust,  flexible,  and 
powerful than the maintenance of text and metadata 
within database management systems (DBMS).

iii. Although  a  computer’s  main  memory  is  still  the 
fastest form of data storage, even with compression 
techniques  it  does  not  seam  feasible  to  rely 
exclusively  on  RAM.  Attempts  to  implement 
(indexless)  in-memory  databases  for  considerably 
large  language  corpora  (Pomikálek  et.  al.,  2009) 
perform  well  for  unparsed  texts  but  are  strongly 

limited  in  terms  of  storage  size  and,  therefore, 
cannot  deal  with  terabytes  of  multi-layer 
annotations.

iv. In  order  to  overcome  physical  RAM  limitations, 
other  approaches  use  database  systems  and 
decompose  sequences  of  strings  from  the  source 
texts  into  indexed  n-gram  tables  (Davies,  2005). 
This results in relatively low query costs and allows 
fast retrieval with a predefined maximum number of 
search  expressions.  However,  space  requirements 
for  increasing values  of  n  are  enormous,  and  the 
consuming of system resources for queries spanning 
more  than a handful  of  words or  even sentences, 
thus,  becomes  unacceptable.  Moreover,  complex 
queries  with  regular  expressions  (Find  all  tokens 
that start with a capital letter followed by one or  
two vocals, and end on 'der') or NOT-queries (Find 
all tokens that are not classified as nouns) – both 
are crucial for comprehensive linguistic exploration 
–  do  not  benefit  from  n-gram-based  full-string 
indexes and, thus, perform rather poor.

As  a  consequence,  our  corpus  storage  and  retrieval 
approach uses an object-relational DBMS (64-bit Oracle 
11.2.0.1.0 running  on  CentOS  5.6)  with  fine-grained 
data spread across specifically designed tables. Figure 1 
shows an excerpt from our conceptual data model as an 
entity-relationship  diagram.  Entity  types  (corpus,  text, 
sentence,  word) are displayed as  rectangles  with their 
attributes  represented  as  ellipses (computed  attributes 
have  dotted  borders);  relationships  are  represented  as 
diamond-shape connectors. In order to evaluate speedup 
and  scaling  effects,  we  implemented  the  entire 
framework (i.e.,  data and retrieval procedures) on two 
independent systems:

i. Single  computer,  single  processor,  multi-core:  A 
commodity low-end server  driven  by a quad-core 
CPU with 2.67 GHz clock rate and 16GB RAM.

ii. Single computer,  multi-processor,  multi-core:  This 
symmetric  multiprocessing  system  (SMP)  uses 
eight  quad-core  microprocessors  with  2,3  GHz 
clock rate and 128GB RAM. 



For the reliable measurement of query execution times – 
and especially to minimize caching effects – we used a 
“cold” database,  meaning that the database instance is 
opened  and  that  the  most  relevant  caching  areas  are 
cleared. Oracle's server-side memory, known as System 
Global  Area  (SGA),  consists  of  various  components 
dedicated to different tasks: The dictionary cache holds 
information about data dictionary objects; the redo log 
buffer  stores  uncommitted  transactions  etc.  Most 
influential for our retrieval runs is probably the buffer 
cache,  i.e.,  the  part  of  the  SGA containing  the  most 
recently used data blocks in order to reduce disk I/O. We 
always  cleared  it  by  entering  the  command  ALTER 
SYSTEM FLUSH BUFFER_CACHE. We intentionally 
did  not  flush  the  Shared  Pool  (ALTER  SYSTEM 
FLUSH SHARED_POOL) because this part of the SGA 
stores,  among  other  things,  information  about  user 
privileges,  table  structures,  etc.  as  well  as  optimized 
execution plans. We believe that especially the latter are 
essential  features  of  a  relational  database  system and 
should  be  taken  into  account  when  evaluating  its 
suitability for corpus retrieval - flushing the shared pool 
seems even more artificial than not flushing it. 

3. Query Strategies

Focusing  on  DBMS-driven  corpus  storage,  the 
following retrieval strategies look promising:

i. Concatenated SQL joins: This strategy makes use of 
the relational power of sub-queries and joins and is 
already  used  for  productive  corpus  retrieval. 
Chiarcos et. al. (2008) use an intermediate language 
between query formulation and database backend; 
Bird  et.  al.  (2005)  present  an  algorithm  for  the 
direct  translation  of  linguistic  queries  into  SQL. 
This  approach  uses  absolute  word  positions,  and 
therefore  allows  proximity  queries  without 
limitation  of  word  distances.  We implemented  an 
extensible web-based retrieval form (see Figure 2) 
that  can be used to  intuitively formulate complex 
queries  using  distinct  search  keys  on  different 
metadata types, e.g.:  Find all sentences containing 
a  determiner  immediately  followed  by  a  proper  
noun ending on “er”,  immediately followed by a  

noun, immediately followed by the lemma “oder”,  
followed  by  a  determiner  (any  distance),  
immediately followed by a plural noun, followed by  
the lemma “sein” (any distance). This form invokes 
a stored procedure that formulates and executes the 
corresponding SQL query with all necessary joins. 
The  query  uses  one  single  token  table, 
corresponding to the “word” entity in Figure 1.

ii. Task  separation  and  parallelization:  Programming 
models  like  MapReduce  support  concurrent 
execution  of  tasks  and,  thus,  tackle  large-data 
problems. Alhough MapReduce is already in use in 
a wide range of data-intensive applications (Lin & 
Dyer, 2010), its principle of “divide and conquer” 
has not yet been employed for corpus retrieval. We 
employ  an  extended  MapReduce  strategy  that 
regulates  the  distribution  of  language  data  and 
processor-intensive computation over several CPU 
cores – or even cluster of machines – and controls 
the  partition  of  complex  linguistic  queries  into 
independent  processes  that  can  be  executed  in 
parallel.  Figure  3  illustrates  the  map/reduce 
processes for our sample query from above: Within 
a “map” step, the original query is partitioned into 
eight  separate  key-value  pairs.  Keys  represent 
linguistic  units  (position,  token,  lemma,  part-of-
speech,  etc.)  values  may  be  the  actual  content. 
Again,  all  queries  use  the  single  word  table,  but 
they  can  be  processed  in  parallel  and  pass  their 
results (sentence/position) to temporary tables. The 
subsequent  “reduce”  processes  filter  out 
inappropriate results step by step. Usually, multiple 
reducing  steps  cannot  be  executed  in  parallel 
because each reduction produces the basis for the 
next step. But our framework, implemented with the 
help  of  PL/SQL  stored  procedures  within  the 
RDBMS, overcomes this restriction by dividing the 
entire  search  tree  into  multiple  sub-trees.  The 
reduce  processes  for  different  sub-trees  are 
scheduled  simultaneously  and  aggregate  their 
results after they are finished. So the seven reduce 
steps  of  our  example  can  be  executed  quite 
naturally  within  only  four  parallel  stages.  The 
parallel framework stores the search results within 



the database schema, making it easy to reuse them 
for  further  statistical  processing.  Additional 
metadata  restrictions  (e.g.,  genre,  topic,  location, 
date) are translated into separate map processes and 
reduced/merged in parallel to the main search.

4. Evaluation Scenarios and Results

Executing  the  concatenated  SQL statement  (3.i)  with 
eight  multi-type  search  keys  against  the  four-billion 
word corpus on the single processor system exceeded its 
capability when applying the joins  with traditional  B-
tree  indexes  on  unpartitioned  heap-tables  because  the 
nested  loops  generated  an  immense  workload  –  we 
canceled the operation after a runtime of ten hours. The 
parallel  MapReduce search  (3.ii)  took  less  than  thirty 
minutes  to  complete.  This  strongly  indicates  that  the 
second approach fits much better for big corpus data and 
multiple  search  keys  but  that  further  improvements 
should  be  carried  out.  This  includes  the  testing  of 
appropriate index variants that are the key to efficient 
corpus retrieval (Ghodke & Bird, 2010). 

Although we are comparing response times for queries 
on different server systems and under different settings, 
our  main  interest  is  not  to  contribute  to  overall 
benchmark tests.  Database management  systems are a 
widespread  and  mature  technology:  Their  general 
advantages  and  disadvantages  have  been  listed  and 
benchmarked for decades. The most prominent feature 
that  makes  them  interesting  for  querying  multiple 
annotated language corpora is probably the flexibility of 
the (object-)relational approach: Multiple markup layers 
can  be  converted  into  object-relational  structures  that 
then can be accessed with the help of SQL; additional 
metadata such as text type or creation date can be added 
and queried in the same way. But despite these general 
advantages,  the  practical  application  of  database 
management systems for corpus retrieval is still under-
investigated.  We aim to reveal  tendencies  when using 
RDBMSs and MapReduce for natural language corpus 
retrieval: Which query strategy seems reasonable under 
certain conditions? Which storing settings fit to specific 
language  data?  Thus,  our  systematic  evaluation 
concentrates on the following questions:

i. How  do  SQL  joins  perform  for  increasing 
numbers of search keys?  We evaluate this on 
1-,  10-,  100-,  1000-,  and  4000-million  word 
corpora with rare-, low-, mid-, high-, and top-
level search keys. Figure 4 shows the response 
times in seconds on the single processor server 
for  the  query  select  count(t1.co_sentenceid)  
from tb_token t1, (select co_id, co_sentenceid  
from  tb_token  where  co_token=token1)  t3,  
(select  co_id,  co_sentenceid  from  tb_token  
where co_token = token2) t2 where co_token =  
token3  and  t1.co_sentenceid  = 
t2.co_sentenceid  and  t1.co_sentenceid  = 
t3.co_sentenceid and t1.co_id < t2.co_id and 
t2.co_id < t3.co_id, using three search keys on 
identical  annotation  data  (token)  and  single-
column indexes that can be queried in parallel. 
This  query  simply  counts  the  number  of 
sentences  containing  three  specified  tokens 
(token1,  token2,  token3)  in  a  fixed  order. 
Compared to  similar  queries  with two search 
keys (63s for a top-level search, Figure 5) or 
one  search  key  (6s  for  a  top-level  search, 
Figure 6), the increase of response time on the 
4000-million  corpus  is  obviously 
disproportional (301s). So SQL joins on token 
data  get  remarkably  less  performant  for 
searches with three (or even more) top-frequent 
search keys, even when making use of in-built 
query  parallelization  and  the  database's  cost-
based optimizer. On the multi-processor server, 
the results showed the same tendency: Alhough 
absolute  response  times  were  decreased  by a 
factor of 5 to 6 (e.g., the search for der and die 
on  the  4000-million  corpus  completed  in  14 
seconds instead of 63 seconds, the search for 
der,  die and  und completed  in  56  seconds 
instead  of  301  seconds),  queries  still  took 
significantly longer when joining three (or even 
more)  frequent  search  tokens  in  a  SQL 
statement.

ii. When  sticking  to  a  maximum of  two  search 
keys per SQL query (and splitting queries with 
more search keys to multiple “map” processes 



that store their results in temporary tables), how 
does this solution scale on the multi-processor 
system?  We tested  this  for  three  top-frequent 
tokens  (der/die/und)  on  the  4000-million 
corpus. The search pattern is – from a linguistic 
point  of  view  –  not  genuinely  interesting, 
neither semantically nor grammatically.  But it 
provides  a  perfect  test-case  for  “expensive” 
corpus  requests  by  initiating  the  following 
highly data-intensive SQL statements: 

(1) MAP1:  insert  into  TB_MAP1 
(co_sentenceid,  co_id)  select  
t1.co_sentenceid,  t2.co_id  from 
TB_TOKEN  t1,  (select  co_id,  
co_sentenceid  from  TB_TOKEN  where  
co_token='die') t2 where t1.co_token='der'  
and  t1.co_sentenceid  =  t2.co_sentenceid  
and t1.co_id < t2.co_id;  

(2) MAP2: insert  into  TB_MAP2 
(co_sentenceid,  co_id)  select  
t1.co_sentenceid,  t1.co_id  from 
TB_TOKEN t1 where t1.co_token='und';

(3) REDUCE:  insert  into  TB_REDUCE 
(co_sentenceid)  select  t1.co_sentenceid  
from  TB_MAP1  t1,  TB_MAP2  t2  where  
t1.co_sentenceid=t2.co_sentenceid  and 
t1.co_id < t2.co_id;

Statement  1  and  statement  2  are  scheduled 
simultaneously;  the reduce statement 3 has to 
wait  until  both map processes  are completed. 
Figure 7 shows the results on the two servers – 
please  note  that  –  as  expected  –  the  insert 
statements took longer than the queries in 4.i 
since we are not only counting the number of 
sentences but also storing the sentence ids in a 
final result table for further processing. Overall, 
our tests reveal that  the scaling benefit is not 
strictly linear  (32  CPU cores  do not  perform 
our MapReduce retrieval eight times faster than 
4 cores), but it  is promising: The searches on 
the multi-processor system completed about 4 

to 5 times faster than on the single processor 
system. This corresponds to Amdahl's Law that 
says that the maximum speedup improvement 
when using multiple  processors  is  limited  by 
several factors, most  prominently by inevitable 
sequential  fractions of the executed tasks. On 
the  other  hand,  concurrency  problems  gain 
weight  when  parallelization  is  increased;  this 
phenomenon  is  addressed  by  Neil  Gunther's 
Super-Serial Scalability Model. At any rate, our 
MapReduce approach performed better than the 
concatenated SQL joins – and the more search 
keys are used, the difference should be bigger. 
There  may  be  some  potential  for  further 
optimization  of  our  mapping algorithm (How 
should complex queries be divided? How many 
parallel  query  tasks  are  optimal  for  our 
system?)  as  well  as  for  the  fine-tuning  of 
database  parameters  (sizes  of  memory  areas, 
maximum number of processes, parallelization 
degrees of tables and indexes, etc.). 

iii. How  does  partitioning  of  language  data 
improve  response  times?  We  partitioned  a 
separate  POS  table,  containing  information 
about each token's word class as identified by 
the Connexor tagger,  according to POS value 
and sentence number:  create table tb_morpho 
(co_sentenceid  number(10),  co_morpho 
varchar2(10),  co_sub  varchar2(10),  co_id  
number(10)) partition by range(co_sentenceid)  
subpartition  by  list  (co_morpho)  subpartition  
template  (subpartition  A  values  ('A'),  
subpartition  DET  values  ('DET'),  ...  ,  
subpartition  PRON  values  ('PRON'),  
subpartition P values ('P')) (partition p1 values  
less than (20000000), partition p2 values less  
than (40000000), … , partition p11 values less  
than  (220000000),  partition  p12  values  less  
than  (240000000),  partition  p13  values  less  
than  (MAXVALUE)).  The  same  partitioning 
was  done  for  the  associated  multi-column 
index.  When  comparing  response  times  after 
and  before  the  reorganization,  we  found  that 
the query select  unique t1.co_sentenceid from 



tb_morpho  t1,  tb_morpho  t2  where  
t1.co_sentenceid  =  t2.co_sentenceid  and  
t1.co_morpho  =  'PRON'  and 
t2.co_morpho='DET' (“find  all  sentences 
containing a pronoun and a determiner”) on the 
single  processor  system  was  now  completed 
within 50 seconds instead of 300 seconds. So 
partitioning relational tables holding linguistic 
data  according to  often-used  search  attributes 
with  a  small  number  of  distinct  values 
obviously raises  their  potential  for  fast  query 
execution.  This  can  be  explained  with  the 
simple  fact  that  queries  for  particular  POS 
values  no  longer  have  to  scan  the  whole 
table/index but only certain partitions, and with 
the possibility to distribute searches on multiple 
partitions to multiple CPU cores. 

iv. How can specific index types improve complex 
queries?  Advanced  pattern  matching  with 
regular  expressions  (RegExp)  or  double/left 
truncated wildcards is a feature often demanded 
for linguistic corpus retrieval. Modern database 
management  systems  usually contain  specific 
enhancements for their retrieval languages that 
allow for the integration of regular expressions. 
For  example,  Oracle  RDBMS  offers  four 
RegExp functions  that  implement  the  POSIX 
Extended  Regular  Expressions  (ERE): 
REGEXP_REPLACE,  REGEXP_SUBSTR, 
REGEXP_LIKE and REGEXP_INSTR. E.g., a 
SQL search for  tokens starting with a  capital 
letter, followed by the substring  'mini' (at any 
distance) and ending on the suffix 'er' (again at 
any distance) would use the RegExp-enhanced 
restriction  clause  WHERE  REGEXP_LIKE 
(<column  name>,  '^[[:upper:]].*mini.*er$'). 
Unfortunately,  standard  database  index  types 
(b-tree,  bitmap)  do  not  support  this  kind  of 
query because  it  is  impossible  to  forecast  all 
possible RegExp patterns, so the execution plan 
will always arrange a time-consuming full table 
scan. On the other hand, prototypical linguistic 
searches  mostly  contain  indexable  substrings 
that  can  be  used  to  speed  up  the  query: 

Linguists  look  quite  rarely  for  complex 
chemical  formulas or something like “a word 
starting with two numeric digits,  followed by  
'A' or 'D', followed by a numeric digit between  
5  and  8,  etc.”.  More  frequently,  they  are 
interested in words ending on a certain suffix or 
containing a certain stem. In order to improve 
performance  for  such  queries,  Giles  (2005) 
propose to build functional bitmap indexes over 
all  possible  substrings  of  all  corpus  tokens. 
These indexes should then be used as primary 
filters  for  queries  containing  regular 
expressions.  Thus,  the  above query would be 
superseded  by the  statement  SELECT unique 
matchvalue  FROM  TABLE  (getmatches  
('tb_token',  'co_token',  'mini'))  WHERE 
REGEXP_LIKE  (matchvalue,  
'^[[:upper:]].*mini.*er$'),  where  the  in-line 
table  function  acts  as  primary  filter  by 
generating  a  subquery  like  select  
/*+ index_combine(t) */  co_token  from 
tb_token t where ( substr(t.co_token, 1,2) = 'mi'  
and  substr(t.co_token,  3,2)  =  'ni')  or  
(substr(t.co_token,  2,2)  =  'mi'  and  
substr(t.co_token,  4,2)  =  'ni')  [...]. Since 
bitmap indexes can be combined efficiently on 
the fly,  the subquery is  expected to  complete 
quite  performant.  We evaluated this  approach 
and contrasted the results with: 

(1) a similar approach that instead of user-built 
substring indexes uses Oracle's CONTEXT 
index  type  (Oracle  Corp.,  2011). 
CONTEXT is often used for building text 
query  applications  and  document 
classification  applications,  and  provides 
means  to  improve  left-truncated and 
double-truncated wildcard searches.  

(2) the omission of any primary filter, i.e. the 
full table scan variant.

Figure 8 addresses  the substring filtering and 
shows  the  results  and  execution  times 
(hh:mm:ss)  of  three  sample  SQL statements 



(without  RegExp,  but  with  substring  search) 
that  insert  the  retrieved  unique  tokens  into  a 
temporary  table,  using  the  two  different 
primary filters on our single processor server. 
There  is  a  minor  difference  regarding  the 
number of results that can be explained by the 
fact  that  the  manually-built  substring indexes 
cover  only  the  first  100  characters  of  each 
token (the corpus contains some outliers with 
up  to  800 characters  that  we did  not  index), 
whereas CONTEXT includes all tokens.  Both 
variants use the four CPU cores in parallel, but 
the  CONTEXT  index  beats  the  user-built 
substring indexes clearly in terms of speed. 

Next, we excluded the table inserts as well as 
the  “unique”  constraints,  and  tested  some 
assorted  RegExp-enhanced  SQL  statements 
that  count  the  occurrences  of  all  matching 
tokens  within  our  corpus  database.  The  first 
retrieval  run  was  always  without  primary 
filters,  then  we  used  the  manually-built 
substring bitmap indexes, and finally the built-
in  CONTEXT  index.  Figure  9  displays  the 
corresponding results and response times. They 
reveal a somewhat unexpected behaviour, since 
the  (indexless)  full  table  scan  variant 
sometimes performed considerably faster than 
queries  with  the  user-built  substring 
prefiltering.  This behaviour did not – at  least 
not always and not significantly – correspond 
with the amount of data/number of  rows that 
were prefiltered/retrieved. Most likely,  several 
issues generally influence the suitability of the 
tested  approaches  for  regular  expression 
search: The complexity of the RegExp search 
pattern, the use of left- or right-side truncation, 
the  language-specific  distribution  of  (initial) 
word  substrings,  etc.  All  these  aspects  are 
worth to be investigated in more detail; we see 
our test runs as a first starting point, outlining 
the way to an optimal use of database indexing 
techniques for  RegExp retrieval.  In  any case, 
however, the best results were again achieved 
when  we  deployed  the  prefiltering  restriction 

with  the  CONTEXT  index.  As  we  see  in 
Figures 10 (full table scan) and 11 (CONTEXT 
index),  the  database's  explain  plan  – 
automatically  generated  by  the  Cost  Based 
Optimizer (CBO) with the help of table/index 
statistics – for this scenario starts with scanning 
the  index,  secondly  applies  the  regular 
expression  on  the  results,  and  only  then 
accesses the table (“by local index rowid”, the 
most cost-intensive operation of this run).

5. Summary and Outlook

The results of our studies demonstrate that the joining of 
relational DBMS technology with a parallel computing 
approach  like  MapReduce  combines  the  best  of  both 
worlds  for  linguistically motivated corpus retrieval  on 
big  datasets.  It  makes  annotated  language  corpora 
manageable,  eases the reuse and further processing of 
results, and scales well. As our initial evaluation shows, 
standard SQL joins do not sufficiently handle queries for 
complex  structures  and  syntagmatic  patterns  on  very 
large  natural  language  collections  and  should  be 
complemented by a dedicated concurrency model. The 
tests  on  the  multi-processor  system  demonstrate  the 
suitability of  our approach  on high-end servers  –  and 
further  parallelization  over  multiple  machines  would 
most  likely benefit  even  more  from the  separation of 
sub-tasks/sub-queries.

Furthermore,  we  showed   that  in  order  to  overcome 
relational  bottlenecks,  advanced  database  features  like 
table partitioning and functional indexes can be adapted 
to the specifics of language corpora. For example, the 
value-driven partitioning of the POS table significantly 
improved  response  times,  and  introducing  custom-
tailored substring indexes for the pre-filtering of regular 
expressions  seems  to  be  an  effective  way  to  enable 
advanced pattern matching on big textual data. We will 
investigate the latter idea in more detail. In addition to 
the presented retrieval  runs,  a  quick test  with flexible 
combinations  of  manually-built  indexes  for  word 
beginnings/endings  (to  be  automatically  employed  for 
search expressions with fixed beginnings/endings) and 



CONTEXT  indexes  (for  double-truncated  RegExp 
searches) already showed promising results.

For the future, we plan some scheduling refinements of 
our  parallel  framework  as  well  as  further  testing  of 
index  types  for  different  types  of  linguistic  data.  A 
comparison with existing corpus retrieval systems (e.g., 
Corpus  Workbench or  SketchEngine)  and/or  an 
implementation of our framework on different database 
management systems would be desirable – not only in 
terms  of  response  times  but  also  especially  regarding 
flexibility  (e.g.,  how  can  query  results  be 
displayed/processed?) and expandability (e.g., how can 
additional metadata and concurrent annotation layers be 
integrated?). In addition, it would be interesting to see 
how quantitative language laws can be utilized to fine-
tune corpus retrieval systems, e.g., how Zipf's law can 
contribute to the design and filling of token tables.
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Figure 1: Semantic/conceptual data model (excerpt). 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Web-based retrieval form with our sample query. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: MapReduce processes for a concatenated query with eight search keys. 



 

Figure 4: Response times (s) for nested SQL queries with three search keys (logarithmic scaled axis). 

 

 

Figure 5: Response times (s) for nested SQL queries with two search keys (logarithmic scaled axis). 



 

Figure 6: Response times (s) for nested SQL queries with one search key (logarithmic scaled axis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Execution times (s) for MapReduce processes on the 4-billion word corpus with three top frequent 

search keys (logarithmic scaled axis). 

 



Figure 8: Results and execution times (hh:mm:ss) for sample queries using the two different prefilter indexes. 

 Figure 9: Results and execution times (hh:mm:ss) for sample RegExp queries with and without prefilter indexes. 



 

 

Figure 10: Explain plan for sample RegExp queries without prefiltering. 

 

 

 

 

 

     Figure 11: Explain plan for sample RegExp queries with CONTEXT-based prefiltering. 
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