
Evaluating DBMS-based Access Strategies to Very Large Multi-layer Corpora

Roman Schneider
Institut für deutsche Sprache (IDS)

R5 6-13, D-68161 Mannheim /Germany
schneider@ids-mannheim.de

Abstract

Linguistic query systems are special purpose IR applications. As text sizes, annotation layers, and metadata schemes of language

corpora grow rapidly, performing complex searches becomes a highly computational expensive task. We evaluate several storage

models and indexing variants in two multi-processor/multi-core environments, focusing on prototypical linguistic querying

scenarios. Our aim is to reveal modeling and querying tendencies – rather than absolute benchmark results – when using a

relational database management system (RDBMS) and MapReduce for natural language corpus retrieval. Based on these findings,

we are going to improve our approach for the efficient exploitation of very large corpora, combining advantages of state-of-the-art

database systems with decomposition/parallelization strategies. Our reference implementation uses the German DeReKo reference

corpus with currently more than 4 billion word forms, various multi-layer linguistic annotations, and several types of text-specific

metadata. The proposed strategy is language-independent and adaptable to large-scale multilingual corpora.

Keywords: Very Large Corpora, Multi-layer Annotation, Linguistic Retrieval, Database Management Systems, Concurrency

1. Motivation

In recent years, the quantitative examination of natural
language phenomena has become one of the
predominant paradigms within (computational)
linguistics. Both fundamental research on the basic
principles of human language as well as the
development of speech and language technology
increasingly rely on the empirical verification of
assumptions, rules, and theories. More data are mostly
seen as better data (Church & Mercer, 1993), and
consequently, we notice a growing number of national
and international initiatives related to the building of
large linguistic datasets for contemporary world
languages. Besides written (and sometimes spoken)
language samples, these corpora usually contain vast
collections of morphosyntactic, phonetic, semantic, etc.
annotations, plus text- or corpus-specific metadata.

The downside of this trend is obvious: Complex queries
against very large multi-layer corpora (meaning corpora
with multiple, potentially concurring annotation layers)
quickly become highly computational expensive tasks.

So even with specialized applications, our ability to
store linguistic data is often bigger than our ability to
analyze all this data in detail. In addition, the findings of
empirical corpus studies should be traceable and
reproducible (Kilgarriff, 2007; Pedersen, 2008).

Much of essential work towards the querying of
linguistic corpora goes into data representation,
integration of different annotation systems, and the
formulation of query languages (Rehm et. al., 2008;
Zeldes et. al., 2009; Kepser et. al., 2010; Frick et. al.,
2012). We add to this efforts by focusing the scaling
problem: As we go beyond corpus sizes of some billion
words and at the same time increase the number of
possible search keys (linguistically motivated
annotations as well as text-specific metadata like
publication date, text type, genre, etc.), query costs rise
disproportionately. This is due to the fact that unlike
traditional IR systems, corpus retrieval systems have to
deal not only with the “horizontal” representation of
textual data but also with heterogeneous metadata on all
levels of linguistic description. And, of course, the
exploration of inter-relationships between annotations

becomes more and more challenging as the number of
annotation systems increases; e.g., Bański et. al. (2012)
discuss the demands and technical issues when
developing innovative corpus analysis platforms.

Given this context, we proposed a novel retrieval
approach that uses task parallelization and scales well to
billion-word corpora (Schneider, 2011). The following
sections evaluate speedup effects of this approach in
multi-processor/multi-core environments as well as
influences of data parallelization (partitioning) and
indexing methods.

2. The Reference System

We are using a subset of 4 billion words from the multi-
layer annotated German Reference Corpus DeReKo
(Deutsches Referenzkorpus) (Kupietz et. al., 2010),
which constitutes the largest linguistically motivated
collection of contemporary German. It covers language
data from different media types (literature, newspapers,
specialist journals, online texts, etc.), has been annotated
morphosyntactically with three competing systems
(Connexor, Xerox, TreeTagger), and provides additional
text-specific metadata.

Complex data of this kind can be made accessible in
different ways. In order to filter out inappropriate
approaches, we formulate the following presuppositions:

i. XML/SGML-based markup languages are more
suitable for data exchange than for efficient storing
and retrieval, so we prefer a compact encoding.

ii. File-based data storage is less robust, flexible, and
powerful than the maintenance of text and metadata
within database management systems (DBMS).

iii. Although a computer’s main memory is still the
fastest form of data storage, even with compression
techniques it does not seam feasible to rely
exclusively on RAM. Attempts to implement
(indexless) in-memory databases for considerably
large language corpora (Pomikálek et. al., 2009)
perform well for unparsed texts but are strongly

limited in terms of storage size and, therefore,
cannot deal with terabytes of multi-layer
annotations.

iv. In order to overcome physical RAM limitations,
other approaches use database systems and
decompose sequences of strings from the source
texts into indexed n-gram tables (Davies, 2005).
This results in relatively low query costs and allows
fast retrieval with a predefined maximum number of
search expressions. However, space requirements
for increasing values of n are enormous, and the
consuming of system resources for queries spanning
more than a handful of words or even sentences,
thus, becomes unacceptable. Moreover, complex
queries with regular expressions (Find all tokens
that start with a capital letter followed by one or
two vocals, and end on 'der') or NOT-queries (Find
all tokens that are not classified as nouns) – both
are crucial for comprehensive linguistic exploration
– do not benefit from n-gram-based full-string
indexes and, thus, perform rather poor.

As a consequence, our corpus storage and retrieval
approach uses an object-relational DBMS (64-bit Oracle
11.2.0.1.0 running on CentOS 5.6) with fine-grained
data spread across specifically designed tables. Figure 1
shows an excerpt from our conceptual data model as an
entity-relationship diagram. Entity types (corpus, text,
sentence, word) are displayed as rectangles with their
attributes represented as ellipses (computed attributes
have dotted borders); relationships are represented as
diamond-shape connectors. In order to evaluate speedup
and scaling effects, we implemented the entire
framework (i.e., data and retrieval procedures) on two
independent systems:

i. Single computer, single processor, multi-core: A
commodity low-end server driven by a quad-core
CPU with 2.67 GHz clock rate and 16GB RAM.

ii. Single computer, multi-processor, multi-core: This
symmetric multiprocessing system (SMP) uses
eight quad-core microprocessors with 2,3 GHz
clock rate and 128GB RAM.

For the reliable measurement of query execution times –
and especially to minimize caching effects – we used a
“cold” database, meaning that the database instance is
opened and that the most relevant caching areas are
cleared. Oracle's server-side memory, known as System
Global Area (SGA), consists of various components
dedicated to different tasks: The dictionary cache holds
information about data dictionary objects; the redo log
buffer stores uncommitted transactions etc. Most
influential for our retrieval runs is probably the buffer
cache, i.e., the part of the SGA containing the most
recently used data blocks in order to reduce disk I/O. We
always cleared it by entering the command ALTER
SYSTEM FLUSH BUFFER_CACHE. We intentionally
did not flush the Shared Pool (ALTER SYSTEM
FLUSH SHARED_POOL) because this part of the SGA
stores, among other things, information about user
privileges, table structures, etc. as well as optimized
execution plans. We believe that especially the latter are
essential features of a relational database system and
should be taken into account when evaluating its
suitability for corpus retrieval - flushing the shared pool
seems even more artificial than not flushing it.

3. Query Strategies

Focusing on DBMS-driven corpus storage, the
following retrieval strategies look promising:

i. Concatenated SQL joins: This strategy makes use of
the relational power of sub-queries and joins and is
already used for productive corpus retrieval.
Chiarcos et. al. (2008) use an intermediate language
between query formulation and database backend;
Bird et. al. (2005) present an algorithm for the
direct translation of linguistic queries into SQL.
This approach uses absolute word positions, and
therefore allows proximity queries without
limitation of word distances. We implemented an
extensible web-based retrieval form (see Figure 2)
that can be used to intuitively formulate complex
queries using distinct search keys on different
metadata types, e.g.: Find all sentences containing
a determiner immediately followed by a proper
noun ending on “er”, immediately followed by a

noun, immediately followed by the lemma “oder”,
followed by a determiner (any distance),
immediately followed by a plural noun, followed by
the lemma “sein” (any distance). This form invokes
a stored procedure that formulates and executes the
corresponding SQL query with all necessary joins.
The query uses one single token table,
corresponding to the “word” entity in Figure 1.

ii. Task separation and parallelization: Programming
models like MapReduce support concurrent
execution of tasks and, thus, tackle large-data
problems. Alhough MapReduce is already in use in
a wide range of data-intensive applications (Lin &
Dyer, 2010), its principle of “divide and conquer”
has not yet been employed for corpus retrieval. We
employ an extended MapReduce strategy that
regulates the distribution of language data and
processor-intensive computation over several CPU
cores – or even cluster of machines – and controls
the partition of complex linguistic queries into
independent processes that can be executed in
parallel. Figure 3 illustrates the map/reduce
processes for our sample query from above: Within
a “map” step, the original query is partitioned into
eight separate key-value pairs. Keys represent
linguistic units (position, token, lemma, part-of-
speech, etc.) values may be the actual content.
Again, all queries use the single word table, but
they can be processed in parallel and pass their
results (sentence/position) to temporary tables. The
subsequent “reduce” processes filter out
inappropriate results step by step. Usually, multiple
reducing steps cannot be executed in parallel
because each reduction produces the basis for the
next step. But our framework, implemented with the
help of PL/SQL stored procedures within the
RDBMS, overcomes this restriction by dividing the
entire search tree into multiple sub-trees. The
reduce processes for different sub-trees are
scheduled simultaneously and aggregate their
results after they are finished. So the seven reduce
steps of our example can be executed quite
naturally within only four parallel stages. The
parallel framework stores the search results within

the database schema, making it easy to reuse them
for further statistical processing. Additional
metadata restrictions (e.g., genre, topic, location,
date) are translated into separate map processes and
reduced/merged in parallel to the main search.

4. Evaluation Scenarios and Results

Executing the concatenated SQL statement (3.i) with
eight multi-type search keys against the four-billion
word corpus on the single processor system exceeded its
capability when applying the joins with traditional B-
tree indexes on unpartitioned heap-tables because the
nested loops generated an immense workload – we
canceled the operation after a runtime of ten hours. The
parallel MapReduce search (3.ii) took less than thirty
minutes to complete. This strongly indicates that the
second approach fits much better for big corpus data and
multiple search keys but that further improvements
should be carried out. This includes the testing of
appropriate index variants that are the key to efficient
corpus retrieval (Ghodke & Bird, 2010).

Although we are comparing response times for queries
on different server systems and under different settings,
our main interest is not to contribute to overall
benchmark tests. Database management systems are a
widespread and mature technology: Their general
advantages and disadvantages have been listed and
benchmarked for decades. The most prominent feature
that makes them interesting for querying multiple
annotated language corpora is probably the flexibility of
the (object-)relational approach: Multiple markup layers
can be converted into object-relational structures that
then can be accessed with the help of SQL; additional
metadata such as text type or creation date can be added
and queried in the same way. But despite these general
advantages, the practical application of database
management systems for corpus retrieval is still under-
investigated. We aim to reveal tendencies when using
RDBMSs and MapReduce for natural language corpus
retrieval: Which query strategy seems reasonable under
certain conditions? Which storing settings fit to specific
language data? Thus, our systematic evaluation
concentrates on the following questions:

i. How do SQL joins perform for increasing
numbers of search keys? We evaluate this on
1-, 10-, 100-, 1000-, and 4000-million word
corpora with rare-, low-, mid-, high-, and top-
level search keys. Figure 4 shows the response
times in seconds on the single processor server
for the query select count(t1.co_sentenceid)
from tb_token t1, (select co_id, co_sentenceid
from tb_token where co_token=token1) t3,
(select co_id, co_sentenceid from tb_token
where co_token = token2) t2 where co_token =
token3 and t1.co_sentenceid =
t2.co_sentenceid and t1.co_sentenceid =
t3.co_sentenceid and t1.co_id < t2.co_id and
t2.co_id < t3.co_id, using three search keys on
identical annotation data (token) and single-
column indexes that can be queried in parallel.
This query simply counts the number of
sentences containing three specified tokens
(token1, token2, token3) in a fixed order.
Compared to similar queries with two search
keys (63s for a top-level search, Figure 5) or
one search key (6s for a top-level search,
Figure 6), the increase of response time on the
4000-million corpus is obviously
disproportional (301s). So SQL joins on token
data get remarkably less performant for
searches with three (or even more) top-frequent
search keys, even when making use of in-built
query parallelization and the database's cost-
based optimizer. On the multi-processor server,
the results showed the same tendency: Alhough
absolute response times were decreased by a
factor of 5 to 6 (e.g., the search for der and die
on the 4000-million corpus completed in 14
seconds instead of 63 seconds, the search for
der, die and und completed in 56 seconds
instead of 301 seconds), queries still took
significantly longer when joining three (or even
more) frequent search tokens in a SQL
statement.

ii. When sticking to a maximum of two search
keys per SQL query (and splitting queries with
more search keys to multiple “map” processes

that store their results in temporary tables), how
does this solution scale on the multi-processor
system? We tested this for three top-frequent
tokens (der/die/und) on the 4000-million
corpus. The search pattern is – from a linguistic
point of view – not genuinely interesting,
neither semantically nor grammatically. But it
provides a perfect test-case for “expensive”
corpus requests by initiating the following
highly data-intensive SQL statements:

(1) MAP1: insert into TB_MAP1
(co_sentenceid, co_id) select
t1.co_sentenceid, t2.co_id from
TB_TOKEN t1, (select co_id,
co_sentenceid from TB_TOKEN where
co_token='die') t2 where t1.co_token='der'
and t1.co_sentenceid = t2.co_sentenceid
and t1.co_id < t2.co_id;

(2) MAP2: insert into TB_MAP2
(co_sentenceid, co_id) select
t1.co_sentenceid, t1.co_id from
TB_TOKEN t1 where t1.co_token='und';

(3) REDUCE: insert into TB_REDUCE
(co_sentenceid) select t1.co_sentenceid
from TB_MAP1 t1, TB_MAP2 t2 where
t1.co_sentenceid=t2.co_sentenceid and
t1.co_id < t2.co_id;

Statement 1 and statement 2 are scheduled
simultaneously; the reduce statement 3 has to
wait until both map processes are completed.
Figure 7 shows the results on the two servers –
please note that – as expected – the insert
statements took longer than the queries in 4.i
since we are not only counting the number of
sentences but also storing the sentence ids in a
final result table for further processing. Overall,
our tests reveal that the scaling benefit is not
strictly linear (32 CPU cores do not perform
our MapReduce retrieval eight times faster than
4 cores), but it is promising: The searches on
the multi-processor system completed about 4

to 5 times faster than on the single processor
system. This corresponds to Amdahl's Law that
says that the maximum speedup improvement
when using multiple processors is limited by
several factors, most prominently by inevitable
sequential fractions of the executed tasks. On
the other hand, concurrency problems gain
weight when parallelization is increased; this
phenomenon is addressed by Neil Gunther's
Super-Serial Scalability Model. At any rate, our
MapReduce approach performed better than the
concatenated SQL joins – and the more search
keys are used, the difference should be bigger.
There may be some potential for further
optimization of our mapping algorithm (How
should complex queries be divided? How many
parallel query tasks are optimal for our
system?) as well as for the fine-tuning of
database parameters (sizes of memory areas,
maximum number of processes, parallelization
degrees of tables and indexes, etc.).

iii. How does partitioning of language data
improve response times? We partitioned a
separate POS table, containing information
about each token's word class as identified by
the Connexor tagger, according to POS value
and sentence number: create table tb_morpho
(co_sentenceid number(10), co_morpho
varchar2(10), co_sub varchar2(10), co_id
number(10)) partition by range(co_sentenceid)
subpartition by list (co_morpho) subpartition
template (subpartition A values ('A'),
subpartition DET values ('DET'), ... ,
subpartition PRON values ('PRON'),
subpartition P values ('P')) (partition p1 values
less than (20000000), partition p2 values less
than (40000000), … , partition p11 values less
than (220000000), partition p12 values less
than (240000000), partition p13 values less
than (MAXVALUE)). The same partitioning
was done for the associated multi-column
index. When comparing response times after
and before the reorganization, we found that
the query select unique t1.co_sentenceid from

tb_morpho t1, tb_morpho t2 where
t1.co_sentenceid = t2.co_sentenceid and
t1.co_morpho = 'PRON' and
t2.co_morpho='DET' (“find all sentences
containing a pronoun and a determiner”) on the
single processor system was now completed
within 50 seconds instead of 300 seconds. So
partitioning relational tables holding linguistic
data according to often-used search attributes
with a small number of distinct values
obviously raises their potential for fast query
execution. This can be explained with the
simple fact that queries for particular POS
values no longer have to scan the whole
table/index but only certain partitions, and with
the possibility to distribute searches on multiple
partitions to multiple CPU cores.

iv. How can specific index types improve complex
queries? Advanced pattern matching with
regular expressions (RegExp) or double/left
truncated wildcards is a feature often demanded
for linguistic corpus retrieval. Modern database
management systems usually contain specific
enhancements for their retrieval languages that
allow for the integration of regular expressions.
For example, Oracle RDBMS offers four
RegExp functions that implement the POSIX
Extended Regular Expressions (ERE):
REGEXP_REPLACE, REGEXP_SUBSTR,
REGEXP_LIKE and REGEXP_INSTR. E.g., a
SQL search for tokens starting with a capital
letter, followed by the substring 'mini' (at any
distance) and ending on the suffix 'er' (again at
any distance) would use the RegExp-enhanced
restriction clause WHERE REGEXP_LIKE
(<column name>, '^[[:upper:]].*mini.*er$').
Unfortunately, standard database index types
(b-tree, bitmap) do not support this kind of
query because it is impossible to forecast all
possible RegExp patterns, so the execution plan
will always arrange a time-consuming full table
scan. On the other hand, prototypical linguistic
searches mostly contain indexable substrings
that can be used to speed up the query:

Linguists look quite rarely for complex
chemical formulas or something like “a word
starting with two numeric digits, followed by
'A' or 'D', followed by a numeric digit between
5 and 8, etc.”. More frequently, they are
interested in words ending on a certain suffix or
containing a certain stem. In order to improve
performance for such queries, Giles (2005)
propose to build functional bitmap indexes over
all possible substrings of all corpus tokens.
These indexes should then be used as primary
filters for queries containing regular
expressions. Thus, the above query would be
superseded by the statement SELECT unique
matchvalue FROM TABLE (getmatches
('tb_token', 'co_token', 'mini')) WHERE
REGEXP_LIKE (matchvalue,
'^[[:upper:]].*mini.*er$'), where the in-line
table function acts as primary filter by
generating a subquery like select
/*+ index_combine(t) */ co_token from
tb_token t where (substr(t.co_token, 1,2) = 'mi'
and substr(t.co_token, 3,2) = 'ni') or
(substr(t.co_token, 2,2) = 'mi' and
substr(t.co_token, 4,2) = 'ni') [...]. Since
bitmap indexes can be combined efficiently on
the fly, the subquery is expected to complete
quite performant. We evaluated this approach
and contrasted the results with:

(1) a similar approach that instead of user-built
substring indexes uses Oracle's CONTEXT
index type (Oracle Corp., 2011).
CONTEXT is often used for building text
query applications and document
classification applications, and provides
means to improve left-truncated and
double-truncated wildcard searches.

(2) the omission of any primary filter, i.e. the
full table scan variant.

Figure 8 addresses the substring filtering and
shows the results and execution times
(hh:mm:ss) of three sample SQL statements

(without RegExp, but with substring search)
that insert the retrieved unique tokens into a
temporary table, using the two different
primary filters on our single processor server.
There is a minor difference regarding the
number of results that can be explained by the
fact that the manually-built substring indexes
cover only the first 100 characters of each
token (the corpus contains some outliers with
up to 800 characters that we did not index),
whereas CONTEXT includes all tokens. Both
variants use the four CPU cores in parallel, but
the CONTEXT index beats the user-built
substring indexes clearly in terms of speed.

Next, we excluded the table inserts as well as
the “unique” constraints, and tested some
assorted RegExp-enhanced SQL statements
that count the occurrences of all matching
tokens within our corpus database. The first
retrieval run was always without primary
filters, then we used the manually-built
substring bitmap indexes, and finally the built-
in CONTEXT index. Figure 9 displays the
corresponding results and response times. They
reveal a somewhat unexpected behaviour, since
the (indexless) full table scan variant
sometimes performed considerably faster than
queries with the user-built substring
prefiltering. This behaviour did not – at least
not always and not significantly – correspond
with the amount of data/number of rows that
were prefiltered/retrieved. Most likely, several
issues generally influence the suitability of the
tested approaches for regular expression
search: The complexity of the RegExp search
pattern, the use of left- or right-side truncation,
the language-specific distribution of (initial)
word substrings, etc. All these aspects are
worth to be investigated in more detail; we see
our test runs as a first starting point, outlining
the way to an optimal use of database indexing
techniques for RegExp retrieval. In any case,
however, the best results were again achieved
when we deployed the prefiltering restriction

with the CONTEXT index. As we see in
Figures 10 (full table scan) and 11 (CONTEXT
index), the database's explain plan –
automatically generated by the Cost Based
Optimizer (CBO) with the help of table/index
statistics – for this scenario starts with scanning
the index, secondly applies the regular
expression on the results, and only then
accesses the table (“by local index rowid”, the
most cost-intensive operation of this run).

5. Summary and Outlook

The results of our studies demonstrate that the joining of
relational DBMS technology with a parallel computing
approach like MapReduce combines the best of both
worlds for linguistically motivated corpus retrieval on
big datasets. It makes annotated language corpora
manageable, eases the reuse and further processing of
results, and scales well. As our initial evaluation shows,
standard SQL joins do not sufficiently handle queries for
complex structures and syntagmatic patterns on very
large natural language collections and should be
complemented by a dedicated concurrency model. The
tests on the multi-processor system demonstrate the
suitability of our approach on high-end servers – and
further parallelization over multiple machines would
most likely benefit even more from the separation of
sub-tasks/sub-queries.

Furthermore, we showed that in order to overcome
relational bottlenecks, advanced database features like
table partitioning and functional indexes can be adapted
to the specifics of language corpora. For example, the
value-driven partitioning of the POS table significantly
improved response times, and introducing custom-
tailored substring indexes for the pre-filtering of regular
expressions seems to be an effective way to enable
advanced pattern matching on big textual data. We will
investigate the latter idea in more detail. In addition to
the presented retrieval runs, a quick test with flexible
combinations of manually-built indexes for word
beginnings/endings (to be automatically employed for
search expressions with fixed beginnings/endings) and

CONTEXT indexes (for double-truncated RegExp
searches) already showed promising results.

For the future, we plan some scheduling refinements of
our parallel framework as well as further testing of
index types for different types of linguistic data. A
comparison with existing corpus retrieval systems (e.g.,
Corpus Workbench or SketchEngine) and/or an
implementation of our framework on different database
management systems would be desirable – not only in
terms of response times but also especially regarding
flexibility (e.g., how can query results be
displayed/processed?) and expandability (e.g., how can
additional metadata and concurrent annotation layers be
integrated?). In addition, it would be interesting to see
how quantitative language laws can be utilized to fine-
tune corpus retrieval systems, e.g., how Zipf's law can
contribute to the design and filling of token tables.

6. References

Bański, P.; Fischer, P.M.; Frick, E.; Ketzan, E.; Kupietz,
M.; Schnober, C.; Schonefeld, O.; Witt, A. (2012).
The New IDS Corpus Analysis Platform: Challenges
and Prospects. In Proceedings of the Eighth
Conference on Language Resources and Evaluation.

Bird, S.; Chen, Y.; Davidson, S.; Lee, H.; Zhen, Y.
(2005). Extending XPath to Support Linguistic
Queries. In Proceedings of the Workshop on
Programming Language Technologies for XML.

Chiarcos, C.; Dipper, S.; Götze, M.; Leser, U.; Lüdeling,
A.; Ritz, J.; Stede, M. (2008). A Flexible
Framework for Integrating Annotations from
Different Tools and Tag Sets. In Traitement
Automatique des Langues 49(2), pp. 271-293.

Church, K.; Mercer, R. (1993). Introduction to the
Special Issue on Computational Linguistics Using
Large Corpora. In Computational Linguistics 19(1),
pp. 1-24.

Davies, M. (2005). The advantage of using relational
databases for large corpora. In International Journal of
Corpus Linguistics 10(3), pp. 307-334.

Frick, E.; Schnober, C.; Bański, P. (2012). Evaluating
query languages for a corpus processing system. In

Proceedings of the Eighth International Conference
on Language Resources and Evaluation.

Giles, D. (2005). Oracle bitmap Indexes and their use in
pattern matching. Unpublished Technical Whitepaper.
http://dominicgiles.com/technicalpapers.html

Ghodke, S.; Bird, S. (2010). Fast query for large
treebanks. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pp. 267-275.

Kepser, S.; Mönnich, U.; Morawietz, F. (2010). Regular
Query Techniques for XML-Documents. In Metzing,
D.; Witt, A. (Eds.): Linguistic Modeling of
Information and Markup Languages, Springer, pp.
249-266.

Kilgarriff, A. (2007). Googleology is bad science. In
Computational Linguistics, 33(1), pp. 147-151.

Kupietz, M.; Belica, C.; Keibel, H.; Witt, A. (2010). The
German Reference Corpus DeReKo: A Primordial
Sample for Linguistic Research. In Proceedings of the
Seventh Conference on Language Resources and
Evaluation (LREC 2010), pp. 1848-1854.

Lin, J.; Dyer, C. (2010). Data-Intensive Text Processing
with MapReduce. Synthesis Lectures on Human
Language Technologies. Morgan & Claypool.

Oracle Corp. (2011). Text Application Developer's
Guide 11g Release 2 (11.2). http://docs.oracle.com/
cd/E11882_01/text.112/e24435.pdf

Pedersen, T. (2008). Empiricism Is Not a Matter of
Faith. In Computational Linguistics, 34(3), pp. 465-
470.

Pomikálek, J.; Rychlý, P.; Kilgarriff, A. (2009). Scaling
to Billion-plus Word Corpora. In Advances in
Computational Linguistics 41, pp. 3-13.

Rehm, G.; Schonefeld, O.; Witt, A.; Chiarcos, C.;
Lehmberg, T. (2008). A Web-Platform for Preserving,
Exploring, Visualising and Querying Linguistic
Corpora and Other Resources. In Procesamiento del
Lenguaje Natural 41, pp. 155-162.

Schneider, R. (2011). A functional database framework
for querying very large multi-layer corpora. In
Proceedings of the GSCL Conference 2011.

Zeldes, A.; Ritz, J.; Lüdeling, A.; Chiarcos, C. (2009).
ANNIS: A Search Tool for Multi-Layer Annotated
Corpora. In Proceedings of Corpus Linguistics 2009.

Figure 1: Semantic/conceptual data model (excerpt).

Figure 2: Web-based retrieval form with our sample query.

Figure 3: MapReduce processes for a concatenated query with eight search keys.

Figure 4: Response times (s) for nested SQL queries with three search keys (logarithmic scaled axis).

Figure 5: Response times (s) for nested SQL queries with two search keys (logarithmic scaled axis).

Figure 6: Response times (s) for nested SQL queries with one search key (logarithmic scaled axis).

Figure 7: Execution times (s) for MapReduce processes on the 4-billion word corpus with three top frequent

search keys (logarithmic scaled axis).

Figure 8: Results and execution times (hh:mm:ss) for sample queries using the two different prefilter indexes.

 Figure 9: Results and execution times (hh:mm:ss) for sample RegExp queries with and without prefilter indexes.

Figure 10: Explain plan for sample RegExp queries without prefiltering.

 Figure 11: Explain plan for sample RegExp queries with CONTEXT-based prefiltering.

	Evaluating DBMS-based Access Strategies to Very Large Multi-layer Corpora

