The semantics of event nominalisation

Sebastian Bücking¹ and Markus Egg²

¹Universität Tübingen
sebastian.buecking@uni-tuebingen.de

²Rijksuniversiteit Groningen
egg@let.rug.nl

12 December 2008

Bücking and Egg
The semantics of event nominalisation

Structure of the talk

- two challenges for a semantic description of nominalisations
 - argument linking
 - anti-iconic readings
- the framework of analysis: underspecified semantic representation
- the analysis
- semantic construction

Event nominalisations and verbal arguments 1

- derivational affixes turn verbs into nouns denoting events or one of their participants
 1. die Verarbeitung der Daten
 'the processing of the data'
 2. beautiful dancer
- arguments of the verb can become optional during nominalisation
- others are explicitly bound in the nominalisation process
- this binding refers to thematic roles of arguments
 - agent for the agentic suffix -er
 - theme for the genitive complement of -ung-nominalisations

Bücking and Egg
The semantics of event nominalisation

Event nominalisations and verbal arguments 2

- to handle reference to thematic roles and argument linking, we use a Neo-Davidsonian approach (Parsons 1990)
 - verbs and their arguments are linked in terms of explicit thematic relations
 3. \[\lambda y \lambda x \lambda e. eat'(x, y)(e) \]
 4. \[\lambda y \lambda x \lambda e. eat'(e) \land \text{AGENT}(e, x) \land \text{THEME}(e, y) \]
- no need to bind off syntactically unrealised arguments of the verb stem in the semantics
 5. \[\lambda x \lambda e. \exists y. eat'(x, y)(e) \]
 6. \[\lambda x \lambda e. eat'(e) \land \text{AGENT}(e, x) \]
Event nominalisations and verbal arguments

- Nominalisation affixes are semantic functions and their stems are arguments.
- The affixes introduce the relevant thematic relations.
 - The agentive -er:
 \[\lambda P \lambda x \exists e. P(e) \land \text{AGENT}(e, x) \]
 - The affix -ung (preliminary):
 \[\lambda P \lambda x \lambda e. P(e) \land \text{THEME}(e, x) \]

Semantic construction for (1)

- Semantics of Verarbeitung 'processing':
 \[\lambda x \lambda e. \text{process}'(e) \land \text{THEME}(e, x) \]
- Semantics of Verarbeitung der Daten 'processing of the data':
 \[\lambda e \exists x. \text{[data]}'(x) \land \text{process}'(e) \land \text{THEME}(e, x) \]

Anti-iconic readings of event nominalisations

- Modified agentive nouns exhibit ambiguity due to several possible ways of integrating the modifier semantics.
 \[\lambda P \lambda x \exists e. P(e) \land \text{AGENT}(e, x) \]
- The second reading can be analysed as an anti-iconic, in that the modifier can pertain to the stem only (Egg 2006)

Underspecified representation of anti-iconic cases

- Underspecified representation ('constraint') for the meaning of (9)
 \[\lambda x \exists e. \text{[NP]} \land \text{AGENT}(e, x) \]
- Sets of semantic representations (here, \(\lambda \)-terms) are described on a meta-level
- Ingredients: fragments of \(\lambda \)-terms, 'holes', and relations between them

Bücking and Egg The semantics of event nominalisation
the described semantic representations (‘solutions’) are derived by identifying fragments and holes
formally, a bijective mapping (the ‘plugging’ of Bos 2004)
the solutions of (13)
\[
\begin{align*}
\lambda x \exists e. & \text{dance'}(e) \land \text{AGENT}(e, x) \land \text{beautiful'}(x) \\
\lambda x \exists e. & \text{dance'}(e) \land \text{AGENT}(e, x) \land \text{beautiful'}(e)
\end{align*}
\]

possible relations between the meanings of verbal predicates and their nominalizations
- verb nominalisations have the same meaning as their verb stem (Parsons 1990; Cocchiarella 1996)
- verb nominalisations introduce concrete events that are characterised (relation ‘≈’) by abstract event concepts in terms of verb stem meanings (Cocchiarella 1996)
we follow position 2 and distinguish types for concrete events and for event concepts (cp. Asher 1993)
- variables for concrete events are abbreviated as ‘e’
- variables for event concepts are abbreviated as ‘E’

the more elaborate semantics of the affix -ung is split into a main and a secondary fragment
- main fragment: \(\lambda P \lambda x e. e \approx \lambda E P(E) \)
- secondary fragment: \(\lambda P \lambda x \lambda e. \text{THEME}(e, x) \land P(e) \)

the modifier can pertain to two different entities
- the underlying verbal E (resulting in the internal reading)
- the nominal e (resulting in the external reading)
the verbal theme argument is made available for binding by a subsequent genitive DP argument

\[
\begin{align*}
\text{Verarbeitung} & : \lambda e. e \approx \lambda E \square(E) \\
\text{N} & \lambda \lambda e. \text{THEME}(e, x) \land \text{process'}(e)
\end{align*}
\]
Event nominalisations and their challenges

The formalism

The analysis

Semantic construction

References

Underspecified representation of event nominalisations 1

- semantic representation of *Verarbeitung der Daten* ‘processing of the data’

\[(19)\]

\[
\begin{align*}
\text{NP} : & \quad \Box \\
\lambda e \exists! x. [\text{data}(x)] \land \Box (e) & \quad \lambda e. e \approx \lambda E. \Box (E) \\
\text{NP}_2 : & \quad \lambda e. \text{THEME}(e, x) \land \text{process}'(e)
\end{align*}
\]

Bücking and Egg. The semantics of event nominalisation

Underspecified representation of event nominalisations 2

- constraints like (19) have one solution only
 - unwanted scope ambiguities between top fragment of nominalisations and DP argument fragment are blocked
 - this is due to the typing of event (concept) variables
 - the DP semantics introduces concrete events \(e \)
 - the inner event variable in nominalisations is an event type \(E \)
 - verb (and adverbial) semantics introduce a general event type \(e \)
 - the only solution for (19):

\[(20)\]

\[
\begin{align*}
\lambda e \exists! x. [\text{data}(x)] \land e \approx \lambda E. \text{THEME}(E, x) \land \text{process}'(E)
\end{align*}
\]

- in the following, reference to these types is mostly dropped

Bücking and Egg. The semantics of event nominalisation

Underspecified representation of event nominalisations 3

- representation for *schnelle Verarbeitung der Daten* ‘fast processing of the data’

\[(21)\]

\[
\begin{align*}
\text{NP} : & \quad \Box \\
\lambda e \exists! x. [\text{data}(x)] \land \Box (e) & \quad \lambda e. e \approx \lambda E. \Box (E) \\
\text{NP}_2 : & \quad \lambda y. \Box (y) \land \text{fast}'(y) \\
\lambda e. \text{THEME}(e, x) \land \text{process}'(e)
\end{align*}
\]

Bücking and Egg. The semantics of event nominalisation

Underspecified representation of event nominalisations 4

- solutions by starting

\[(22)\]

\[
\begin{align*}
\lambda e \exists! x. [\text{data}(x)] \land e \approx \\
\lambda E. \text{THEME}(E, x) \land \text{process}'(E) \land \text{fast}'(E)
\end{align*}
\]

\[(23)\]

\[
\begin{align*}
\lambda e \exists! x. [\text{data}(x)] \land e \approx \\
\lambda E. \text{THEME}(E, x) \land \text{process}'(E) \land \text{fast}'(E)
\end{align*}
\]

Bücking and Egg. The semantics of event nominalisation
Locatives 1

- **Locatives** are another instance of external vs. internal reading
- (24) *die Zubereitung des Huhns in der Pfeffersauce*
 the preparation the chicken\textsubscript{GEN} in a pepper-sauce
- (25) *die Zubereitung in der Pfeffersauce des Huhns*
 the preparation in the pepper-sauce the chicken\textsubscript{GEN}
- (26) *die Zubereitung des Huhns in der Küche*
 the preparation the chicken\textsubscript{GEN} in the kitchen

Bücking and Egg
The semantics of event nominalisation

Locatives 2

- diamond for *Zubereitung des Huhns in der Pfeffersauce*
 ‘preparation of the chicken in the pepper sauce’; simplified w.r.t. the DP argument semantics
- (27)
 \[
 \lambda e. \approx \lambda E. \square(\langle E \rangle) \land \lambda y. (y) \land \text{in}'(y, P) \\
 \lambda e. \text{THEME}(\langle e, 1x\cdot\text{chicken}'(x) \rangle) \land \text{prepare}'(e)
 \]

Bücking and Egg
The semantics of event nominalisation

Locatives 3

- solutions of (27)
- (28)
 (a) internal reading
 \[
 \lambda e.e \approx \lambda E.\text{in}'(\langle E, P \rangle) \land \text{THEME}(E, 1x\cdot\text{chicken}'(x)) \land \text{prepare}'(E)
 \]
 (b) external reading
 \[
 \lambda e.\text{in}'(\langle e, P \rangle) \land e \approx \lambda E.\text{THEME}(E, 1x\cdot\text{chicken}'(x)) \land \text{prepare}'(E)
 \]
- the second reading is ruled out pragmatically: ‘the preparation event as a whole is localised in the pepper-sauce’
- the first reading raises the question of what it means to localise the lexical base E, i.e., how does this apply to the chicken?

Bücking and Egg
The semantics of event nominalisation

Locatives 4

- Maienborn’s (2003) proposal for adverbial locatives
- (29)
 MOD*: $\lambda Q, P, \lambda x[P(x) \& R(x, v) \& Q(v)]$
 Condition: if MOD* applies to categorial type X, $R = \text{part-of}$, otherwise (in an XP-environment) R is identity.
- (30)
 $[\text{VP} \ [\text{PP in der Küche} \ [\text{VP das Huhn zubereiten}]]]$
 $[\text{VP} \ [\text{PP in the kitchen} \ [\text{VP the chicken prepare}]]]$
- (31)
 $[\text{VP das Huhn} \ [\text{VP in einer Pfeffersauce} \ [\text{VP zubereiten}]]]$
 $[\text{VP the chicken} \ [\text{VP in a pepper-sauce} \ [\text{VP prepare}]]]$
- (32)
 external: $\lambda e \ldots \text{prepare}'(e) \land \text{in}'(e, K) \ldots$
- (33)
 internal: $\lambda e \ldots \text{prepare}'(e) \land \text{part-of}'(e, v) \land \text{in}'(v, P) \ldots$
- in the internal case, the free variable v is conceptually specified

Bücking and Egg
The semantics of event nominalisation
Semantic construction of anti-iconic cases

- Somewhere the gap between syntactic and semantic structure must be bridged.
- Several possibilities have been suggested:
 - Syntactic preprocessing (Generative Grammar)
 - Involved syntactic construction (L-TAG, Kallmeyer and Romero 2008; LFG, Çetinoğlu and Oflazer 2006)
 - Powerful syntax-semantics interface (Egg 2006)
 - Semantic representations are constraints
 - A main and a secondary fragment are distinguished
 - Interface rules refer to these fragments and determine them for emerging constituents

Semantic construction 3

- Semantics of Verarbeitung ‘processing’

$$\text{[\text{Verarbeitung}} \vdash \lambda e \approx \lambda E. P(E)$$

$$\text{[N2} \vdash \lambda P \lambda y \lambda e. P(e) \land \text{THEME}(e, y) \text{]}(\text{process}')$$

- After β-reduction

$$\text{[\text{N3} \vdash \lambda y \lambda e. \text{process}'(e) \land \text{THEME}(e, y)](E)}$$
Semantic construction 4

- rule for DP arguments

\[(\exists X. DP) \stackrel{(SSI)}{\Rightarrow} [X] : [DP]; [X_2] : [DP]([X_2])\]

- after the integration of the DP-argument *der Daten* 'of the data'

\[\lambda_e. e \approx \lambda E. \square (E) \quad \square : \lambda e \exists ! x. [\text{data}'(x)] \wedge \square (e)\]

\[\lambda e. \text{process}'(e) \wedge \text{THEME}(e, x)\]

- References

